Modeling and Control of Discrete Event Dynamic Systems: a Simulator-based Reinforcement-learning Paradigm
نویسندگان
چکیده
A general reinforcement-learning approach for controlling discrete event systems is presented. A machine-repair example is formulated: (1) to describe and explain the DEVS formulation, and (2) to illustrate the general control method. Modified gradient learning methods and evolutionary programming methods are compared for the purpose of optimizing the controller. An on-line adaptation method is presented; and, the use of fuzzy logic and artificial neural networks for such adaptation is compared. Evolutionary programming methods for controller optimization prove to be the most robust type of optimization. Moreover, the fuzzy and neural adaptation approaches are successful in improving the performance of the static controller for dynamic operating conditions.
منابع مشابه
Using Interval Petri Nets and Timed Automata for Diagnosis of Discrete Event Systems (DES)
A discrete event system (DES) is a dynamic system that evolves in accordance with the abrupt occurrence, at possibly unknown irregular intervals, of physical events. Because of the special nature of these systems, different tools are currently used for their analysis, design and modeling. The main focus of this paper is the presentation of a new modeling approach of Discrete Event Systems. The ...
متن کاملReal-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملDetermination of optimum of production rate of network failure prone manufacturing systems with perishable items using discrete event simulation and Taguchi design of experiment
This paper, considers Network Failure Manufacturing System (NFPMS) and production control policy of unreliable multi-machines, multi-products with perishable items. The production control policy is based on the Hedging Point Policy (HPP). The important point in the simulation of this system is assumed that the customers who receive perishable item are placed in priority queue of the customers w...
متن کاملStochastic control via direct comparison
The standard approach to stochastic control is dynamic programming. In this paper, we introduce an alternative approach based on direct comparison of the performance of any two policies. This is achieved by modeling the state process as a continuous-time and continuous-state Markov process and applying the same ideas as for the discrete-time and discrete-state case. This approach is simple and ...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کامل